If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-5y=9
We move all terms to the left:
y^2-5y-(9)=0
a = 1; b = -5; c = -9;
Δ = b2-4ac
Δ = -52-4·1·(-9)
Δ = 61
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{61}}{2*1}=\frac{5-\sqrt{61}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{61}}{2*1}=\frac{5+\sqrt{61}}{2} $
| 5v=64-3v | | (-5t+11)^2=0 | | 1/4y=8/15 | | -2(x-5)-4=6-2x | | 12x-13=3x-14 | | D=5t+4t^2 | | 4v+25=9v | | -2×7d=14 | | a+432=-9a-8 | | y^2+3y-20=0 | | X+3×=x+x÷10 | | 25x+8+9+2=180 | | 4-a=13 | | -27d=14 | | 3(x+7)-3=3x+18 | | 2s-5=-9 | | 3(x-7)-3=3x+18 | | 60=-16t^2+28t+60 | | t-3/4t+3/2=3/4(t+1/2) | | 4x-4=x-1 | | 4d-2d+5=13 | | 216=6^2r-11 | | 18s-11s-4s=6 | | x+76=-3x-8 | | 1/2(6x)^2+4=226 | | 4l=59 | | 12b-9b+5=8 | | 19p-10p-9p+2p=18 | | 1092=6(x+17) | | 3y-4=39 | | 10u-10u+4u-4u+2u=12 | | 3n^2+10n+7=0 |